

Detect earth-like planets, orbiting other stars. Anders Karlsson

DARWIN Study Manage

 Characterize the found planets, including determining the presence of earth-like life.

 Provide a high-resolution imaging for general astrophysics.

DARWIN - An overview

- Mission concepts for space interferometers ('84 '92)
- Horizon 2000 ('85) No interferometry mission
- Interferometry studies ('90, '92, '94)
- MOFFIT study ('96)
- DARWIN proposal ('96)
- DARWIN concept and feasibility study ('00)
- Search for terrestrial exo-planets defined as high priority action in ESA's long term plan (2000)
- Technology development and trade-offs
- ESA-NASA Letter of Agreement (LoA) ('02)
- Reassessment of system level study 2005/6

The problem ...

- Star a million (IR) to a billion (VIS) times brighter than exo-earth, separated by 100 mas

Optical nulling of star by 100.000

Optical path difference: 20 nm

Telescope pointing: 24 mas

- Amplitude matching: 1%

Wavefront quality: lambda / 2000

Compare lighthouse and candle in Madrid separated by 1 m

... viewed from Noordwijk

Science spectral band:

- Optics temperature:

6 -18 micron

40 K

DARWIN Concept

Infrared interferometer

- Multi-aperture : 1.5 m telescopes
- Laurance type configuration
- Wide band spectroscopy

Free-flyer

- Micropropulsion
- Laser & RF metrology

Wavefront filtering

Enabling technology – relaxes requirement on WF quality

Why free-flying IR interferometer?

- Nulling relaxed by factor 1000 as compared to visual
- Adjustable baseline
- Less demanding than structurally connected
- Less demanding mirror quality (by SMW filtering)
- Formation flying needed for other future missions
- European science community not convinced mission objectives can be achieved visual / reflected light
- Persuing also coronagraph would be expensive

DARWIN Development Programme

Technology
Development
Programme

Formation Flying

Interferometry

FINCH system simulator
formation flying
& interferometry

SMART 3
Formation Flying
precursor

GENIE stellar nulling interferometry

COROT & Eddington stellar occultations

Directorate of Scientific Programme

668

Interferometry

Optical Delay Line

- TRP-1: Optical Delay Line

Achromatic Phase Shifter

- TRP-1: Achromatic Phase Shifter (breadboarding)
- GSTP-2: Cryogenic APS

Single Mode Waveguides

- TRP-1: Single Mode Waveguides (materials)
- TRP-2: Advanced Waveguide Coupling Device

Integrated Optics

- TRP-1: Integrated optics (materials)
- TRP-2: Nulling Interferometer in integrated optics
- TRP-2: Integrated Optics by photo-inscription (explorative)

- Passive Components

- TRP-2: Dichroics, Beamsplitters, Polarizationsplitters, Coatings, Reproducability
- GSTP-2: Zero-order gratings

- Nulling breadboards constructed

- Room temperature (wavelength 1 um)
- Two arm interferometer
- Integrated optics (Alcatel)
- "Bulk" optics (Astrium)

Next step: DARWIN spectral range

- GSTP-2: Test harness for high resolution instruments
- TRP-2: Verification of TIR nulling interferometer
- Components from various activities

Next step: Multi-arm interferometer

Internal Modulation

Formation Flying -Metrology / Propulsion

- Coarse Metrology

- TRP-1: Formation Flying RF Subsystem
- GSTP-2: RF Metrology Subsystem (dual frequency & S-band)

- Optical Metrology

- TRP-1: High Precision Optical Metrology
- TRP-1: Fringe Sensor
- GSTP-2: Cryogenic Fringe Sensor
- TRP-2: Wavefront tilt sensor
- TRP-2: Phase Referencing Technology

Field Emission Electric Propulsion (FEEP)

- TRP1: Various activities for LISA
- Cold Gas Micro-propulsion
 - TRP2: Components for micro-propulsion

-Formation Flying Control

- -TRP1: Interferometer Constellation Control (Astrium + Alcatel)
- -TRP1: Interferometer Deployment Control
- -TRP2: Formation Flying Avionics and Control

-Formation Flying Bread-board

-TRP2: Formation Flying Testbed

Directorate of Scientific Programme

Structure, Detectors and Thermal Control

- Structures

- TRP-1: Solar Array, Sunshield and Radiator
- TRP-2: Vibration Damping Technology

- Detectors

- TRP-1: Far Infrared Detector Array (QWIP)
- TRP-1: Detector Read-Out Electronics
- GSTP-2: Mid-Infrared Detector
- TRP-2: Chopping Spectrograph

- Thermal Control

- TRP-1: Sorption Cooler (second stage 20K to 6K)
- TRP-2: Vibration Free 18K Cooler (first stage down to 18K)
- TRP-2: Solid Cryogen Cooler

Architecture Study

IR interferometer architecture study performed by JPL.

Calculation of number of stars that can be surveyed with different configurations.

- Preferred config.: Dual Chopped Bracewell (hi-lo)
- Theta-2 suppression sufficient?

ESA performs similar, but independent study.

- expected results: medio January 2004
- different assumptions?
 - star catalogue
 - planet size, wavelengths

Objective: Confirm or identify critical parameters

Schedule

